Bifurcation Analysis of Reinforcement Learning Agents in the Selten's Horse Game
نویسندگان
چکیده
The application of reinforcement learning algorithms to multiagent domains may cause complex non-convergent dynamics. The replicator dynamics, commonly used in evolutionary game theory, proved to be effective for modeling the learning dynamics in normal form games. Nonetheless, it is often interesting to study the robustness of the learning dynamics when either learning or structural parameters are perturbed. This is equivalent to unfolding the catalog of learning dynamical scenarios that arise for all possible parameter settings which, unfortunately, cannot be obtained through “brute force” simulation of the replicator dynamics. The analysis of bifurcations, i.e., critical parameter combinations at which the learning behavior undergoes radical changes, is mandatory. In this work, we introduce a one-parameter bifurcation analysis of the Selten’s Horse game in which the learning process exhibits a set of complex dynamical scenarios even for relatively small perturbations on
منابع مشابه
An Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...
متن کاملDevelopment of Reinforcement Learning Algorithm to Study the Capacity Withholding in Electricity Energy Markets
This paper addresses the possibility of capacity withholding by energy producers, who seek to increase the market price and their own profits. The energy market is simulated as an iterative game, where each state game corresponds to an hourly energy auction with uniform pricing mechanism. The producers are modeled as agents that interact with their environment through reinforcement learning (RL...
متن کاملHierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملQuantum information approach to normal representation of extensive games
We modify the concept of quantum strategic game to make it useful for extensive form games. We prove that our modification allows to consider the normal representation of any finite extensive game using the fundamental concepts of quantum information. The Selten's Horse game and the general form of two-stage extensive game with perfect information are studied to illustrate a potential applicati...
متن کاملScale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics
A continuous time model for multiagent systems governed by reinforcement learning with scalefree memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment ...
متن کامل